Specifications – electrical

Power source 4.1 – 38 VDC
Measuring range (dual mode) ±90° (two-dimensional)
Resolution 0.025° | 0.5 mg (data rate ≤ 5)
Temperature sensor accuracy: ±0.05°/°C (typical)
Power consumption < 30 mA (@ 5 V)

Applications

• Platform control, alignment, and stabilization
• Inclination (pitch and roll) and rotational movement measurement
• Antenna and satellite dish tracking and rotational movement measurement
• Motion and position measurement
• Navigation and GPS compensation
• Robotic position sensing and control
• Position feedback for solar tracking systems
• Agricultural and industrial vehicle tilt monitoring

Specifications – mechanical

Protection IP 67 (housing, connector and cable)
Dimension 1.65” x 2.15” x 1.00”
Material Enclosure: anodized aluminum
(cable is optional as a third party product)
Connection Cable gland
connector M8, 6-Contact (female)

Terminal Assignment

<table>
<thead>
<tr>
<th>Connector</th>
<th>RS232/UART/USB</th>
<th>RS422</th>
<th>RS485</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 1</td>
<td>+Vin</td>
<td>+Vin</td>
<td>+Vin</td>
<td>Brown</td>
</tr>
<tr>
<td>Pin 2</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
<td>White</td>
</tr>
<tr>
<td>Pin 3</td>
<td>TX</td>
<td>TX+</td>
<td>D+</td>
<td>Blue</td>
</tr>
<tr>
<td>Pin 4</td>
<td>–</td>
<td>TX-</td>
<td>D-</td>
<td>Black</td>
</tr>
<tr>
<td>Pin 5</td>
<td>RX</td>
<td>RX+</td>
<td>–</td>
<td>Gray</td>
</tr>
<tr>
<td>Pin 6</td>
<td>–</td>
<td>RX-</td>
<td>–</td>
<td>Pink</td>
</tr>
</tbody>
</table>

Accessories

Connector and cable MSKS 6F/CS12187 Male cable M8, 6-pin

Features

• Dual mode digital inclinometer
 • Dual-axis, horizontal installation: ±90°
 • Single-axis, vertical installation: ±180°
• High resolution: 0.025° | 0.5 mg
• High accuracy: err. ≤ 0.15°
• Selectable accelerometer range: ±2 g / ±4 g / ±8 g
• Simple ASCII Interface language
• IP 67 compliant connector, cable, and housing
• LED heartbeat and transmission indicators
• Robust aluminum housing
• Low power consumption: < 30 mA (@ 5 V)

40°F to +221°F)

Applications

• Agricultural and industrial vehicle tilt monitoring
• Navigation and GPS compensation
• Robotic position sensing and control
• Position feedback for solar tracking systems
• Twin mode digital inclinometer
 • Dual-axis, horizontal installation: ±90°
 • Single-axis, vertical installation: ±180°
• High resolution: 0.025° | 0.5 mg
• High accuracy: err. ≤ 0.15°
• Selectable accelerometer range: ±2 g / ±4 g / ±8 g
• Simple ASCII Interface language
• IP 67 compliant connector, cable, and housing
• LED heartbeat and transmission indicators
• Robust aluminum housing
• Low power consumption: < 30 mA (@ 5 V)

30A – Datasheet - 190503 www.CTiSensors.com Page 1 of 4

† Zero g offset can be easily corrected and saved by user.
‡ Units can be calibrated between -40°C and 85°C on request.
WinCTi-Tilt software

WinCTi-Tilt is a graphical user interface (GUI) software provided by CTi Sensor Inc. for visualization aide, device configuration, and data logging. WinCTi-Tilt is designed to be user-friendly and intuitive to users. The package can be downloaded from the CTi Sensors website.

Serial interface and data format

TILT-30A uses the following ASCII format, very similar to the widely used NMEA 0183 protocol, for data output:

- Default message: \$CSTLT,AXN,AYN,AZN,αX,αY,R,T*CC<CR><LF>
- Optional message: \$CSACC,AX,AY,AZ*CC<CR><LF>

Which:

AXN,AYN,AZN: Normalized X, Y and Z accelerations in milli g
AX,AY,AZ: True X, Y and Z accelerations in milli g
αX,αY: Pitch and Roll angles in degrees, horizontal installation
R: Rotation angle in degrees, vertical installation
T: Internal temperature in degree centigrade
CC: Checksum (Two ASCII characters)
<CR> <LF>: Carriage return, and line feed characters

Example:

- \$CSTLT,+0169.3,+0076.1,+0982.6,+009.75,+004.37,+024.2,+022*5C<CR><LF> Data rate ≤ 5
- \$CSTLT,+0169,+0076,+0983,+009.8,+004.4,+024.2,+022*4D<CR><LF> Data rate > 5
- \$CSACC,+0168.9,+0076.9,+0996.7*47<CR><LF>

8-bit Checksum

Checksum is calculated by XORing all characters between \$ and * (not including the $ and the * characters) based on the NMEA standard. It results in two hexadecimal characters, which are sent in ASCII format.
Configuration commands

TILT-30A uses a simple command format which allows user to change the device configuration and request specific information or data. All commands start with a '[' character, and end with a carriage return character. All responses end with a carriage return and newline character. Table I shows the list of the interface commands for TILT-30A series. Letter ‘n’ after '[' character is the unit number which is set to n=1 by default, and can be set by user to any number from 1 to 9.

Table I: Interface commands for TILT-30A series

<table>
<thead>
<tr>
<th>Command</th>
<th>Comments</th>
<th>Response</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>[n<cr></td>
<td>Ping unit number n</td>
<td>(ln<cr><lf>)</td>
<td>Acknowledge ping</td>
</tr>
<tr>
<td>[N?<cr></td>
<td>Request unit number</td>
<td>>Unit Number: n</td>
<td>Returns unit number, default: n=1</td>
</tr>
<tr>
<td>[n#m<cr></td>
<td>Change unit number n to (non-zero) unit number m, (1\leq m \leq 9)</td>
<td>>New Unit Number: n</td>
<td>n=old unit number, m=new unit number, default: n=1</td>
</tr>
<tr>
<td>[n#FW<cr></td>
<td>Save unit number into flash memory</td>
<td>>Current Unit Number, n, was written into flash memory as the default Unit Number for this device!</td>
<td>Unit number will be changed permanently, and current unit number will be saved into the flash memory as the default unit number.</td>
</tr>
<tr>
<td>[nV<cr></td>
<td>Firmware Version</td>
<td>>Firmware Version:d.d</td>
<td>Returns firmware version</td>
</tr>
<tr>
<td>[nS<cr></td>
<td>Serial Number</td>
<td>>Device n Serial Number:ddddd</td>
<td>Returns 7-digit serial number</td>
</tr>
<tr>
<td>[nBFW<cr></td>
<td>Save baud rate into flash memory</td>
<td>>Current Baud Rate, dddddd, was written into flash memory as the default Baud Rate!</td>
<td>Baud rate will be changed permanently, and current baud rate will be saved into the flash memory.</td>
</tr>
<tr>
<td>[nDnn<cr></td>
<td>Data rate setting: (nn= 1, 2, 5, 10, 20, 25, 40, 50, and 100) Hz</td>
<td>>New Output Data Rate: nnn</td>
<td>Default data rate is 2 Hz. New data rate will be saved into the flash memory.</td>
</tr>
<tr>
<td>[nARn<cr></td>
<td>Selecting accelerometer measurement range: (n=2, 4, 8)</td>
<td>> New Accelerometer Range is: +/-ng</td>
<td>New accelerometer range will be saved into the flash memory (Default range is (\pm 2) g).</td>
</tr>
<tr>
<td>[nZA<cr></td>
<td>Zero g offset correction for X and Y axes</td>
<td>>Accelerometer Zero Offset Adjusted: X Offset: ddd, Y Offset: ddd</td>
<td>Resolution of the offset registers is 2 mg, with an effective offset adjustment range of -256 mg to +254 mg for each axis.</td>
</tr>
<tr>
<td>[nMxy<cr></td>
<td>Output messages ON/OFF (x= I:) Inclinometer data A: Accelerometer data y=S: single message C: Continuous message X: Message Off</td>
<td>Data message will be sent out once, continuously or will be turned off</td>
<td>Example for inclinometer data: (1\text{MIS}:) Sends out one data message (1\text{MIC}:) Continuously sends out data message (1\text{MIX}:) Stops sending out data message</td>
</tr>
<tr>
<td>[nMICFW<cr></td>
<td>Save output message ON/OFF status into flash memory</td>
<td>>Current ON/OFF message status was written into flash memory as the default status!</td>
<td>Current message ON/OFF status will be saved into flash memory.</td>
</tr>
<tr>
<td>[nFDR<cr></td>
<td>Factory default reset (firmware version 1.62 and higher)</td>
<td>> Reset to factory default!</td>
<td>Resets the selectable parameters (except baud rate) to their default values.</td>
</tr>
</tbody>
</table>
TILT – 30A
High Accuracy
Three-Axis Accelerometer
Dual-Axis Inclinometer
Datasheet

Dimensional drawing

Part number

<table>
<thead>
<tr>
<th>TILT – XX</th>
<th>X – X – XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design model</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td></td>
</tr>
</tbody>
</table>

Interface

3	RS232
4	RS422
8	RS485
U	USB/UART
S	SSI
W	Wireless

Housing material

A	Aluminum
P	ABS Plastic
S	Stainless Steel 316L
O	OEM (No Housing)

Family Series

05	Small size board (1”x1”)
10	Board with multiple interfaces
15	High accuracy analog inclinometer board
20	Low cost, ABS plastic enclosure
3x	High accuracy, aluminum enclosure
5x	Dynamic inclinometer, aluminum enclosure
70	Harsh environment, stainless steel enclosure

Horizontal installation position

Measuring range: ±90° (two-dimensional)

Default
Y=0

Inclination
Y=+30

Default
X=0

Inclination
X=+30

Vertical installation position

Rotation
R=0

Rotation
R=+45

Rotation
R=90

Rotation
R=+180

Warranty: This product has 18 months limited warranty. For more information, please visit:

www.CTiSensors.com/warranty

This product is fully designed and manufactured in the U.S.A.

CTi Sensor, INC.
30301 Emerald Valley Parkway, Solon, OH 44139
Phone: (440) 264 - 2370
Email: Sales@CTiSensors.com

All contents of this document are subject to change without any notice.